Modeling Mean Radiant Temperature Distribution in Urban Landscapes Using DART
نویسندگان
چکیده
The microclimatic conditions of the urban environment influence significantly thermal comfort human beings. One main biometeorology parameters is Mean Radiant Temperature (Tmrt), which quantifies effective radiative flux reaching a body. Simulation tools have proven useful to analyze behavior an space and its impact on inhabitants. We present new method produce detailed modeling Tmrt spatial distribution using 3-D Discrete Anisotropic Radiation Transfer model (DART). Our approach capable simulate at different scales under range including pattern, surface material ground, walls, roofs, properties vegetation (coverage, shape, spectral signature, Leaf Area Index Density). advantages our are found in (1) fine treatment radiation both short-wave long-wave domains, (2) specification optical materials vegetation, (3) precise representation component, (4) capability assimilate inputs derived from multisource remote sensing data. illustrate provide first evaluation Singapore, tropical city experiencing strong Urban Heat Island effect (UHI) seeking enhance outdoor comfort. comparison between DART modelled field estimated shows good agreement study site clear-sky condition over time period 10:00 19:00 (R2 = 0.9697, RMSE 3.3249). use transfer promising microclimate with increasing landscape details, build linkage methodology has potential contribute towards optimizing climate-sensitive design when combined appropriate tools.
منابع مشابه
CityComfortþ: A simulation-based method for predicting mean radiant temperature in dense urban areas
This paper introduces CityComfortþ, a new method to simulate the spatial variation of the mean radiant temperature (Tmrt) in dense urban areas. This method derives the Tmrt by modeling five components of radiation fluxesddirect solar radiation, diffuse solar radiation, reflected solar radiation, long-wave radiation from the atmosphere, and long-wave radiation from urban surfacesdeach weighted b...
متن کاملDifferent methods for estimating the mean radiant temperature in an outdoor urban setting
The mean radiant temperature (Tmrt) is one of the most important meteorological parameters governing human energy balance. In this paper, three different methods of obtaining the Tmrt in an outdoor urban setting are compared. Method A is based on integral radiation measurements and angular factors, method B is based on measurements with a 38-mm flat grey globe thermometer and in method C makes ...
متن کاملInfluence of ground surface characteristics on the mean radiant temperature in urban areas.
The effect of variations in land cover on mean radiant temperature (T mrt ) is explored through a simple scheme developed within the radiation model SOLWEIG. Outgoing longwave radiation is parameterised using surface temperature observations on a grass and an asphalt surface, whereas outgoing shortwave radiation is modelled through variations in albedo for the different surfaces. The influence ...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
A Framework for Outdoor Mean Radiant Temperature Simulation: Towards Spatially Resolved Thermal Comfort Mapping in Urban Spaces
Mean Radiant Temperature (MRT) is a critical physical quantity that indicates how human beings experience radiation in their surrounding environment. If taken outdoors, MRT depends on the temperature of the sky, ground, vegetation and surrounding buildings, and is therefore difficult to predict reliably. An additional challenge for designers is that publically available simulation tools do not ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2021
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs13081443